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It is shown how the exchange interaction, the dipole-dipole interaction, and the Dzyaloshinsky-Moriya
interaction between electronic spin-density fluctuations emerge naturally from a field-theoretic framework that
couples electrons to the fluctuating electromagnetic potential. Semiquantitative estimates are given to deter-
mine when the dipole-dipole interaction, which is often neglected, needs to be considered and various appli-
cations are discussed, with an emphasis on weak ferromagnets and on helimagnets.
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I. INTRODUCTION

Understanding the origin of ferromagnetism was one of
the success stories of applying quantum mechanics to solid-
state systems. Classically, magnetic moments interact via the
dipole-dipole interaction, which is much too weak to explain
magnetic order at as high a temperature as is observed in,
e.g., iron or nickel."! The explanation of this conundrum was
found to be the exchange interaction mechanism, which
leads to a spin-spin interaction that is governed by the Cou-
lomb interaction via the Pauli principle. This was first under-
stood in the context of atomic and molecular physics in
1920s and applied to solid-state physics in 1950s.! Some-
what ironically, a straightforward application of the exchange
interaction concept leads to a spin-spin interaction that is too
strong, as the relevant energy scale is the atomic scale, or
roughly 100 000 K. Many-body and band-structure effects
renormalize this scale and bring it down to the observed
ferromagnetic scale of roughly 1000 K or lower.? This is still
much larger than the dipole-dipole scale and the latter is
often neglected in the discussion of ferromagnets. When it is
considered, e.g., for its influence on the critical behavior,3™
it is usually added phenomenologically to models that de-
scribe the exchange interaction. Another spin-spin interaction
that has been of interest lately is the Dzyaloshinsky-Moriya
(DM) interaction.®” It results (in systems with suitable lattice
structures) from the spin-orbit interaction, has been derived
from microscopic models, and is believed to be responsible
for the helical magnetic order observed in MnSi and FeGe.?
Rough estimates show that the DM interaction and the
dipole-dipole interaction are of about the same strength and
should thus be considered together.® Furthermore, in weak
ferromagnets, which order only at low temperatures, all three
interactions can be comparable in strength, which can make
the dipole-dipole and DM interactions crucial.

In this paper we provide a comprehensive derivation of all
of these effects within one unified framework, namely, a
field-theoretic description of electrons and photons. Starting
with finite-temperature quantum electrodynamics coupled to
a field-theoretic description of finite-density quasirelativistic
electrons we show that the exchange, dipole-dipole, and DM
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interactions all appear naturally upon integrating out the pho-
tons. The exchange and DM interactions arise from integrat-
ing out the scalar part of the electromagnetic potential; the
dipole-dipole interaction from integrating out the vector po-
tential. Furthermore, the DM and dipole-dipole interactions
are indeed of the same order in the relativistic corrections to
the Schrodinger equation (i.e., of second order in vg/c, with
vr the Fermi velocity and c the speed of light or of second
order in the fine-structure constant «).

Integrating out the fermions then leads to an effective
theory for quantum magnets that generalizes and replaces the
Hertz-Millis theory'®!! and its generalizations.'> More gen-
erally, the theory provides a derivation of spin-spin interac-
tions in itinerant Fermi systems in general, whether or not
they are in a parameter regime where they develop long-
range magnetic order. Our results are therefore relevant, for
instance, for fermionic atoms in optical traps or on optical
lattices."?

This paper is organized as follows. In Sec. II we consider,
as a warm up and to introduce various concepts, classical
magnets, and show how the vector-potential coupling to the
magnetization gives rise to the dipole-dipole interaction. In
Sec. III we develop the technical machinery for dealing with
quantum magnets and provide the derivations mentioned
above. In Sec. IV we discuss our results and provide a sum-
mary and conclusion. Some technical details are relegated to
various appendices.

II. EFFECTIVE ACTION FOR CLASSICAL
FERROMAGNETS AND HELIMAGNETS

We now proceed to derive an effective action for magnets
that includes the effects of the fluctuating electromagnetic
potential. We first consider the classical case as a warm up;
we will generalize to the quantum case in Sec. III.

A. Dipole-dipole interaction

Consider a classical model for a ferromagnet with a three-
component order parameter M. In addition to the field M(x)
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we need to consider the electromagnetic vector potential
A(x) and the partition function Z is given by

Z= J D[M,A]eSMA] (2.1a)

= J D[Me™7MIT, (2.1b)
The model is defined by specifying the action S and in Eq.
(2.1b) we have anticipated integrating out the vector poten-
tial to obtain an effective action F in terms of the order
parameter only. 7 denotes the temperature, so F is the free
energy in mean-field approximation. Throughout this paper
we will use units such that Boltzmann’s constant and
Planck’s constant are equal to unity, kg=h=1.

For the order-parameter part of S, we consider an
O(3)-symmetric ¢* theory,

Sy = _—Tl f dx{%Mz(x) + g[VM(x)P + ZM“(x)}-
14
(2.2a)

Sy represents a Landau-Ginzburg-Wilson (LGW) theory of
an isotropic ferromagnet with volume V— . The parameter
t contains the exchange interaction that leads to a magnetic
ordering transition. In mean-field approximation this transi-
tion occurs at r=0, with >0 describing the paramagnetic
phase, and <0 the ferromagnetically ordered one. @ >0 and
u>0 are two additional model parameters and (VM)?
=3;M;d'M’. Here, and throughout the paper, summation over
repeated vector, tensor, and spinor indices is implied unless
otherwise noted. Note that S, is separately invariant under
rotations in M (spin) space and real space, respectively.

The magnetization'* M couples linearly to the curl of the
magnetic vector potential A,

s.=E2 f dxM(x) - [V X A(x)] (2.2b)
T 14

with ug=e/2m.c the Bohr magneton in terms of the electron
charge e, the electron mass m,, and the speed of light c. A
and V XA transform as vectors in real space, and therefore
S. is invariant only under corotations of spin space and real
space. It is this coupling of the magnetization to the fluctu-
ating vector potential that allows one to consider the magne-
tization as having a particular direction in real space. The
vector potential is governed by

S, =L

Py de{[V X A(x)]*+ %[V -A(x)]z}

(2.2¢)

with p any real number. The first term in Eq. (2.2¢) is the
magnetic energy and the second term with coupling constant
1/p is a gauge fixing term. One popular choice is p=0,
which enforces a Coulomb gauge, V-A=0; another one is
the Feynman gauge, p=1.">!® Either choice ensures a finite
A propagator. In Coulomb gauge, it is
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b,k

AIOA (- 1) = 4m T

(2.3)
The vector potential can now be integrated out exactly,
which leads to an effective action in terms of M only. Alter-
natively, we can consider the magnetic induction B=V XA
the fundamental field to be integrated out. In that case, the
gauge fixing condition needs to be replaced by a constraint
that enforces the Maxwell equation V-B=0. That is, Egs.
(2.2b), (2.2¢), and (2.3) are replaced by'”

sczﬂf dxM(x) - B(x), (2.2b")

Ty
-1 1

Sy = —f dx{Bz(x) +-[V. B(x)]z} , (2.2¢))
7T \% P p—0
<Bi(k)Bj(_ k) =47TT(5ij— ]21’21) (2.3")

Either way we find

F= f dx{ %(; — dmpd)MA(x) + g[VM(x)]Z + ZM“(x)}
14

4
+2mud X, dy(k)M (k)M (- k) (2.4a)
k
with
d;;(k) = kik;. (2.4b)

The terms generated by integrating out the vector potential
we recognize as the leading contribution to the dipole-dipole
interaction®? plus a shift of the Landau parameter ¢ by 47T,LL2B.
The scalar potential ¢(x), whose gradient is the electric field,
does not lead to any magnetic interactions in a classical
theory. This changes once the system is treated quantum me-
chanically, see Sec. III below.

B. Renormalization and higher order terms

The dipole-dipole operator d;;, Eq. (2.4b), transforms as a
rank-2 tensor in momentum (or real) space and M transforms
as a vector in spin space. Consequently, the dipole-dipole
interaction is invariant under corotations in real space and
spin space. This raises the question of other terms in the
action that have the same symmetry properties. For instance,
(V-M)? is allowed by symmetry. This term and terms of
higher order in the gradient are generated by a renormaliza-
tion of the action F, as we now proceed to show.

A renormalization of the action F generates additional
terms by virtue of the anisotropic M propagator, which now
reads

0, — kik; kik;
t+ak®

M (k)M (- k)) = (2.5)

t— 417,11% + ak?

For instance, two-loop diagrams of the structure shown in
Fig. 1 both renormalize d;;(k) and lead to a new vertex
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N

FIG. 1. A diagram that generates a (V-M)? term.

> kM (k)M (= k), (2.6)
k

as well as to higher order anisotropic gradient terms. Equa-
tion (2.6) represents the (V-M)? term that was mentioned
above. Conversely, if one starts with a theory that contains a
(V-M)? term, which is allowed by symmetry and hence
should be included in any Landau theory, then the leading
dipole-dipole term will be generated in perturbation theory
even if it was not included in the bare action. The complete
LGW action for a classical, isotropic Heisenberg ferromag-
net, up to terms quadratic in gradients and quartic in the
order parameter, thus reads

F= f ) dx{%Mz(x) + g[VM(x)]z + %M“(x)}

- %f dxdyM(x)d;;(x —y)M(y) + %f dx[V - M(x)]*.
v v

(2.7a)

Here d;;(x-y) is the Fourier transform of d;;(k) in Eq. (2.4b),
namely,

F 1
ﬁx,- ﬁxj |x —y| '

dij(x —y) = (2.7b)
r is the bare distance from the critical point in the effective
LGW theory that takes into account the effect of the vector
potential, and a, u, djy, and d, are the remaining Landau
parameters. As is clear from the above discussion, one ex-
pects the bare values of d; and d, to be small of order 1/c?
compared to the other parameters in natural units. These two
parameters are usually set equal to zero in elementary treat-
ments of classical Heisenberg ferromagnets.

C. Dzyaloshinsky-Moriya interaction and helimagnets

The terms in the action so far are all even in the gradient
operator and hence invariant under spatial inversion. The
spin-orbit interaction can eliminate this requirement by cou-
pling the electron spins to the underlying lattice, provided
the crystal structure is not inversion invariant.
Dzyaloshinsky’ and Moriya® showed that to linear order in
the spin-orbit interaction gy, the relevant term is

Fpp = —2M f dxM(x) - [V X M(x)] (2.8)

2T
with cpy o g40- At a classical level, this term is purely phe-
nomenological. DM showed how to derive it in the context
of quantum mechanics and in Sec. III we will see how it
arises in the context of field theory.
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III. QUANTUM SYSTEMS

We now turn to a quantum-mechanical description of itin-
erant fermion systems in general and certain types of mag-
netism, in particular. We will show how the exchange inter-
action, the dipole-dipole interaction, and the DM interaction
naturally arise in the context of a field-theoretic description
of itinerant electrons. The former two lead to ferromagnetism
and the latter, if it is present, to helimagnetism.

A. Action

In Appendix A we list the complete action for free qua-
sirelativistic electrons, to order 1/c2, coupled to the electro-
magnetic field. Several terms in the complete action are not
relevant for our present purposes. The only effect of the Dar-
win term, Eq. (Adg), is to modify the Coulomb interaction
on length scales given by the electronic Compton wave-
length \.=1/m.c. The relativistic mass enhancement, the last
term in Eq. (A4b), is a higher order gradient term that is
small compared to terms of the same form that are generated
by renormalizing the final effective action. Finally, the Lan-
dau diamagnetic terms, Eq. (A4f), give rise to diamagnetism
and, in the presence of an external magnetic field, Landau
levels. These effects are physically very different from ferro-
magnetism or helimagnetism and we do not consider them
here. Finally, in quantum electrodynamics the Fadeev-Popov
ghost field does not couple to any other fields. Its only effect
is to subtract the contribution of the unphysical longitudinal
photon polarization to the free energy and one has to keep it
only if one is interested in the absolute value of the latter.
Neglecting all of these terms, we thus consider the following
action:'8

_ - 1
S(psA,) = f dxtﬁg(x)<— 9.+ ﬁVz + ,u,) U, (x)
1 1
+ —f dxAM(x)(—zai + V2>A#(x)
8 c
- ief dxo(x)n(x) + ,u,Bf dxB(x) - ny(x)

. 4,;—22 J iy, ()0, . - [Vx) X V1, (x).

(3.1)

Here x=(x,7) comprises real-space position x and imagi-
nary time 7 and [dx=[,dx[)'dr. , and ¢, are
Grassmann-valued fields for electrons with spin projection o
and the first term in Eq. (3.1) describes free electrons with
chemical potential u."” A,=(¢,-A) (u=0,1,2,3; i
=1,2,3) denotes the electromagnetic potential, with ¢ the
scalar potential and A=(A,,A,,A3) the vector potential, and
the second term in Eq. (3.1) describes the free electromag-
netic field in Feynman gauge [i.e., p=1 in Eq. (A4c)].>° Note
that both four-vector-potential fields in the second term carry
covariant indices, that is, the A action is Euclidian.?! n(x)

=1, (x),(x) and ny(x)= ;ﬂgl(x) 05,0, (x) are the electronic
number and spin density,'* respectively, with o
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=(0",0”,0°) the Pauli matrices, and the third term in Eq.
(3.1) describes the coupling of the electrons to the electro-
magnetic field, with B=V X A the magnetic induction.?? Fi-
nally, the last term in Eq. (3.1) describes the spin-orbit inter-
action. Note that both terms coupling the scalar potential ¢ to
the fermions carry an extra factor of i compared to what one
might expect from the first quantized Hamiltonian. This has
the same origin as the Euclidian metric mentioned above.?!

Equation (3.1) describes a continuum model. Some of the
effects we are interested in are present only in the presence
of certain types of lattices and we will comment later on the
modifications that occur if the electrons are put on a lattice.

B. Integrating out the photons

The action, Eq. (3.1), depends only bilinearly on the elec-
tromagnetic potential. The latter can therefore be integrated
out exactly, albeit at the expense of creating four-fermion
terms. The latter represent electron-electron interactions that
are mediated by the exchange of virtual photons. Technically,
we need the photon propagator, which we can read off the
second term in Eq. (3.1),

(A (0)A(y)=6,,D(x~y) (3.2a)
with
D(x—y)=—4m(dHc* + V) 8(x —y) (3.2b)
or in Fourier space,
D(k) = 47/ (Q2c* + k). (3.2¢)

Here k= (i(),.k) comprises a bosonic Matsubara frequency
Q,=27Tn and a wave vector k.

The result of integrating out the photons exactly is very
complicated and involves interacting electronic modes in
both the spin-singlet and spin-triplet channels, the particle-
particle and particle-hole channels, and all angular momen-
tum channels. We will restrict ourselves to those terms that
are most relevant for magnetism, i.e., interactions between
spin-density fluctuations or modes in the s-wave particle-
hole spin-triplet channel.

1. 0(1/c%: Exchange interaction

We organize the various contributions to the effective
electron-electron interaction in powers of 1/c. To zeroth or-
der only the term coupling ¢ to the number density n in Eq.
(3.1) contributes. Integrating out ¢ leads to a Coulomb inter-
action

1
Se=— E,f dxdyn(x)vc(x —y)d(7, - 7,)n(y) (3.3a)

with

velx) = e%/x|. (3.3b)

Here we have neglected the dynamical nature of the photon
propagator D and have replaced it by its value at (), =0. The
reason for this approximation is that Fermi-liquid effects lead
to a dynamical screening of the Coulomb interaction that is a
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much larger effect than the relativistic dynamics inherent in
Egs. (3.2).

Equation (3.3a) contains number-density fluctuations at
all wavelengths. If one restricts the theory to interactions
between long-wavelength fluctuations, then this interaction
can be rewritten as a sum of parts that includes an interaction
between spin-density fluctuations, see Ref. 23 and Appendix
B. The basic point is that an interaction between number-
density fluctuations at large wave numbers can be written as
one between spin-density fluctuations at small wave num-
bers. In an effective low-energy theory that contains only
fluctuations at wave numbers smaller than some cutoff A, Eq.
(3.3a) therefore contains a contribution

Sex = %f dxns(x) : ns(x), (34)

where the prime on the integral indicates that only the small-
wave-number contributions (smaller than \) to the spin den-
sity n are to be considered in order to avoid overcounting.
As has been explained in Ref. 24, it is convenient to choose
the cutoff N\ as a fixed fraction of the Thomas-Fermi screen-
ing wave number and the spin-triplet interaction amplitude
I, is a Fermi-surface average over vc(k—p)®(lk—p|-X\),
with k and p pinned to the Fermi surface. The restriction to
small wave numbers will be understood from now on and we
will drop the prime on integrals.

Sex 1s the exchange interaction between electronic spin-
density fluctuations that leads ferromagnetism. For later ref-
erence we note that I'; is dimensionally an energy times a
volume which, in this unrenormalized theory, is on the order
of a Rydberg times a Fermi volume or I',~ ¢?/ klz:.

2. 0(1/c?): Dipole-dipole interaction

We now turn to terms of O(1/c?). We first consider the
vector potential A, which couples to the spin density via the
B-ng term in Eq. (3.1). Since the coupling is directly to the
spin channel, no phase-space decomposition is necessary and
integrating out A proceeds as in the classical case, except
that the A propagator now is frequency dependent, see Eq.
(3.2). We will comment on the consequences of this fre-
quency dependence in Sec. III C 2 below. Neglecting the dy-
namical aspects of the dipole-dipole interaction for now, we
obtain a contribution to the effective action

Sea=2mid f dn(x) - n(x)

2
+ %J dxdy (7, = T)n(Nd;(x - y)nl(y) (3.5)

with d;; from Eq. (2.7b). The first term has the same form as
the exchange interaction, Eq. (3.4), but is much smaller, as
ws~T1(vg/c)? The second one is the dipole-dipole interac-
tion between the electron spins; if one replaces the electronic
spin density by its quantum mechanical and thermal average
one recovers the classical dipole-dipole term in Eq. (2.4a) or
Eq. (2.7a).
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3. 0(1/¢*): Dzyaloshinsky-Moriya and related interactions

We now return to the effects of integrating out the scalar
potential @. To O(1/¢?) the relevant contribution comes from
the cross term that multiplies the Coulomb (¢n) term and the
spin-orbit (last) term in Eq. (3.1). Contracting the two scalar
potentials, integrating by parts, using Eq. (C2b), and keeping
only terms that are bilinear in phase-space spin-density fluc-
tuations, we obtain a contribution to the effective action

2
i B
Se0= TBEilmfiij dxdyD(x = y) i, (x) 0{7104

x[ﬁi%(y)“ wag(w} o (). (3.6)
Yk

After a Fourier transform, Eq. (3.6) can be written

W2 T\
B
SS-D: _(‘_/) 2 D(q)(0-0'|0'4 X 00'»30'2)

4 gkp
[(g X p) s (k= @12) s (p + 0/2) Y5, (P = 912) i,

X (k+q/2) = (g X )iy, (k +q12)
X(p=a/2) iy, (p+a/2) (k= q/2)]. (3.7)

Here k=(k,iw,) comprises a wave vector k and a fermionic
Matsubara frequency w,=27T(n+1/2), and p and g are used
analogously. At this point we generalize to an effective inter-
action amplitude Dy ,(¢) that depends on k and p in addition
to ¢. Such a structure is generated in perturbation theory
from the bare theory, where the interaction amplitude is sim-
ply given by the gauge-field propagator, as we demonstrate
in Appendix D. We then have

Seo= M—ZB(Z>2E [De,(9)(g X p)
4 \V akop
Dyu-q)g X )] (05,5, X 04,)
X by (k= q12) s (p + @12) 5, (p = @12) s (K + q12).
(3.8)

Hermiticity requires Dy ,(q)=Dy,(—q) [see also Eq. (B3)].
We now employ the phase-space decomposition explained in
Appendix B and focus on the large-angle scattering term, Eq.
(B4b). Projecting again on the spin density we obtain

———ED@ [nq) X n(-¢)],  (3.92)

where

T
D(q) = ‘—/E 8k&p(k X P Despsq)a. (kip-g)2(k = P)
k.p

+ D(k+p—q)/2,(k+p+q)/2(p - k)] + VZ gkgp(k P)

2

X q[D(k+p+q)/2,(k+p—q)/2(k _P)
- D(k+p—q)/2,(k+p+q)/2(l’ -k)]
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=D"(¢q) +D7(q). (3.9b)

Here

8k = €rOl €& — €p) (3.10)

is a function that results from the projection onto the spin
density and pins k and p to the Fermi surface.”® Eq. (3.9a)
has the form of the result obtained by Moriya.® In what fol-
lows, we discuss the nature of the vector D(g) in some more
detail.

D@ has the form

D¥(q) =ig x d? + 0(¢%) (3.11a)
with d® a real vector given by
d® = H/E 8k&p® — [ Dksp).(k+p)2(k = p)
= Digspy,kpy2p = k). (3.11b)
D can be written
M) =7 3

D;’(q)=iD;q;+ O(q’) (3.12a)

with D;; a real rank-2 tensor given by
D= 2 gi8p€umkipn;k.p), (3.12b)

kp

where

—1 ‘
Elle.p)=—- f dxdy(x; - y;)e kP P2

dez sin[(k-p)-z]D(x,y;z) (3.12¢)

with D(x,y;z) the Fourier transform of Dy ,(¢) in analogy to
Eq. (B2b). D;; has a symmetric part and an antisymmetric
part. The latter can be combined with D® above to form a
contribution to D that we denote by

D(q) = igd + O(g), (3.13a)

where

d;=d? + —E 18y (Dik; (3.13b)

kipj)gj(k’p)-

The symmetric part can be written as a diagonal tensor plus
a traceless rank-2 tensor and the latter can be diagonalized by
means of an orthogonal transformation that amounts to a
spatial rotation. The symmetric part of D;; we thus can write

1
DE;)=§trD5ij+ai5,-j (3.14a)
(no summation convention) where the a; obey
(3.14b)

Eai=0.

If desirable, the a; can be explicitly constructed from Eq.
(3.12b). We thus have a second contribution to D that we
denote by
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. aqu
DW(q) = étr Dq +i| ayq, |+ 0(g?) (3.135)
azqz
and
D(g)=D"(g) +D"(q). (3.16)

Combining our results and transforming back to real
space, we now have

Ss0=Spm+ Spm + Spu» (3.17a)

where

2
Spa= 2 D J dn () -[V X n(0], (3.17b)

12
2 ax(?)«
, MB
SDM = 7 dxns(x) . ayay ns(x) > (3170)
azaz
2
MB

Shm = Tf dx[V - nyx)]d - ny(x)]. (3.174)
SpwMm 1s the Dzyaloshinsky-Moriya interaction that is believed
to be responsible for the helimagnetism observed in MnSi
and FeGe.® S, is a closely related term but absent in sys-
tems with cubic lattices (e.g., MnSi or FeGe) due to the
constraint, Eq. (3.14b). Finally, S, is another term that is
allowed by symmetry and is generated by the above deriva-
tion. All three of these terms are contained in Moriya’s gen-
eral result,® which takes the form of our Eq. (3.9a) above but
the effects of Sp,, and Spy, have, to our knowledge, not been
discussed explicitly.

Note that a necessary condition for any of these interac-
tions to be nonzero is that the system is not invariant under
parity: both D) and D® can be nonzero only if Dy pq) is
odd under ¢ — —q or, equivalently, if D(x,y;z) is odd under
z— —z. This implies that the DM interaction requires a lattice
that is not invariant under spatial inversion; in any con-
tinuum model, where the electron-electron interaction is nec-
essarily even under parity, it vanishes. See Appendix D and
Sec. IV for further discussions of this point.

C. Fermionic action and magnetic order parameter

We now have the following result. After integrating out
the photons, the effective fermionic action reads

Sesl . 4] = So+ Siny + Sex + Sa.a + Som + Shv + Shu

=S5 +8S.,. (3.18)

Here S, describes noninteracting electrons (either free elec-
trons or band electrons, depending on the model considered)
and S contains all interactions between modes other than
the spin density, which we have not explicitly considered
with the exception of the Coulomb interaction, Eq. (3.3).
Collectively we denote these two terms by Si. Sey. Sq.q» Spms
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Spms  and S;’)M are the exchange, dipole-dipole, and
Dzyaloshinsky-Moriya interactions given by Egs. (3.4) and
(3.5), respectively. S., and S, 4 are always present, which, if
any, of the terms in Spy, are nonzero depends on the details
of the lattice structure and absence of spatial inversion sym-
metry is a prerequisite for any of them to be nonzero. Col-
lective, we denote the sum of these interactions in the spin
density or triplet channel by S}

nt*

1. Structure of a magnetic order-parameter description

For applications such as fermionic cold gases one will
want to work directly with the fermionic action. For applica-
tions to magnets it is convenient to introduce a composite
field M(x) whose expectation value is proportional to the
magnetization. To this end we write

(3.19a)

1 i j
Sin =5 f dxdyn (x)T';;(x = y)ni(y)

with

2
o
L(x—y) = 8(x = )T+ pug 7, — 7,)d;(x —y) + 7B5(x -y)

1 1 1
X |:§tr Dfikjak + Efikj(aa)k + Edla]:| . (319b)

Here (ad)y=a,d, (no summation convention). We now de-
couple Eq. (3.19a) by means of a Hubbard-Stratonovich
transformation with a bosonic field M(x). Neglecting a con-
stant contribution to the action, this allows us to write

= - 1
Seil 4 M1 = Sl - Ef dxdyM(x)T';;(x = y) M ,(y)

1 . .
* f dxdy[M(x)T;;(x = y)n{(y) + ny(x)';

X(x=y)M;(y)]. (3.20)

If one neglects the interacting part of S this action de-
pends only bilinearly on the fermion fields, and one can for-
mally integrate out the fermions in order to obtain a theory
entire in terms of the order-parameter field M. This is a gen-
eralization of, and replaces, the Hertz-Millis theory.'%!!
However, in general this is not a good strategy since it
amounts to integrating out soft excitations, which means that
any order-parameter theory will in general not be well be-
haved. Physically, these soft quasiparticle excitations can
change the nature of the phase transition!? or they them-
selves can become critical.?® In either case they must be
treated on equal footing with the order-parameter fluctua-
tions. It therefore is technically advantageous, and physically
more transparent, to work with the coupled field theory rep-
resented by Eq. (3.20).

2. Comments on the magnetization dynamics

We conclude this section with a brief discussion of the
dynamics of the dipole-dipole interaction, which we ne-
glected in Sec. III B 2. If we restore the frequency depen-
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dence of the photon propagator and expand in powers of the
frequency, then the leading dynamical contribution of the
dipole-dipole interaction to Eq. (3.20) takes the form

T L. Q)
SEa = pay, 2 (8= kik) 3 5M(M(- B (3.21)
k

As long as ), scales as |k|, this scales the same as the
|Q2,,|/|k| term in the order-parameter theory that is induced by
Fermi-liquid effects'® but has a prefactor that is smaller by a
factor of (vg/c)?. However, in classical dipolar magnets the
order parameter is known to no longer be conserved.* That
is, () scales as a constant and this should be reflected in the
quantum theory as well, although it is currently not known
how this is realized. This suggests that the contribution
shown in Eq. (3.21) dominates the Fermi-liquid-induced dy-
namics in a scaling sense, although it has a small prefactor
and will become important at sufficiently long time scales.

IV. DISCUSSION AND CONCLUSION

We now discuss the significance of various interactions
for a number of problems.

A. Energy scales and the significance of the dipole-dipole
interaction

As we mentioned in Sec. III A, the energy scale for the
exchange interaction in the bare theory is the atomic scale or
roughly 100 000 K. The corresponding length scale is on the
order of 1 A. This is not consistent with the experimental
fact that magnetic ordering is observed only at much lower
temperatures; e.g., on the order of 1000 K in Fe and Ni, on
the order of room temperature in FeGe, and on the order of
30 K in MnSi. The reason for this discrepancy lies in the fact
that the bare theory is renormalized in quantitatively substan-
tial ways, and the corresponding energy and length scales in
the properly renormalized theory are consistent with experi-
mental observations.?

Equations (3.5) show that the dipole-dipole and DM in-
teractions, within the framework of the bare theory, are
weaker than the exchange interaction by a factor of (vg/c)?
or about 10?7 Relative to the bare exchange interaction,
this implies an energy scale on the order of 10 K, which is
comparable with the ordering temperature in MnSi. On the
other hand, the length scale associated with the DM interac-
tion (i.e., the pitch length of the spin helix?®) is only about
200 A (in MnSi) (Ref. 29) to 700 A (in FeGe) (Ref. 30) or
only a factor of 10>—10° larger than the atomic length scale.

These observations indicate that there are strong renor-
malizations, due to band-structure and many-body effects, of
all terms in the bare action and that different terms are renor-
malized in different ways in different materials. While this
makes it hard to make general statements, the bare theory
suggests that the DM interactions and the dipole-dipole in-
teraction are generically comparable in strength and in MnSi,
for instance, both are expected to be a substantial fraction of
the (greatly reduced by renormalizations) exchange interac-
tion. We thus conclude that there is no a priori reason to
neglect the dipole-dipole interaction in any system where the
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DM interaction is known to be important. This calls for a
re-evaluation of a number of interesting problems, some of
which we list in the following section.

B. Significance of the dipole-dipole interaction

We conclude by discussing a number of problems where
the dipole-dipole interaction is either known to be important,
or might be important, with an emphasis on low-temperature
magnets and other fermion systems.

(1) Classical Heisenberg ferromagnets. This problem was
worked on in great detail by Aharony and Fisher® for the
static critical behavior and by Frey and Schwabl* for the
dynamical critical behavior. The renormalization group done
by Aharony and Fisher started from a nonlocal order-
parameter theory, Eq. (2.7), which leads to a somewhat non-
conventional renormalization procedure. The nonlocality in
Eq. (2.7) is due to integrating out the gauge-field fluctuations
or photons. It would be interesting to repeat this calculation
starting from the coupled local-field theory given by our Eq.
(2.2) before these fluctuations are integrated out.

(2) Classical helimagnets. The standard phase-transition
treatment for helimagnetism due to the DM interaction is due
to Bak and Jensen.® Neglecting the dipole-dipole interaction
term they conclude that there is a fluctuation-induced first-
order phase transition from paramagnetism to helimag-
netism. An interesting question is whether or not the dipole-
dipole interaction modifies this conclusion. This seems
especially relevant for MnSi where the phase transition is at
low temperatures, i.e., it is a weak helimagnet.

(3) It has been shown that in clean itinerant ferromagnets,
the ferromagnetic transition is generically of first order at
zero temperature.'>3! This conclusion ignores the effects of
the dipole-dipole interaction terms. It would be very interest-
ing to investigate if dipolar interactions can modify this ge-
neric conclusion.

(4) Phase ordering is an important problem in
ferromagnets.>? The dipole-dipole interaction terms has not
been included in either the classical or quantum (zero-
temperature) ferromagnetic phase ordering problems. Simple
arguments indicate it will be important.

(5) Fermionic cold atom systems. Recently there has been
a considerable amount of work on gases of fermions with
dipolar interactions, see Ref. 13 and references therein.
These systems are important for fermions in optical lattices.
The dipolar interactions also serve as a mechanism for liquid
crystal like phase formation in fermion systems.

(6) The dipole-dipole interaction term is important in the
dynamics of classical antiferromagnets, both in the ordered
phase, and near or at the phase transition if the systems is
below its upper critical dimension.* Simple considerations
suggest that they will also be important in low-dimensional
(I+1 or 2+1) itinerant quantum antiferromagnets; see Sec.
IIT C 2 above for one aspect of this problem.
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APPENDIX A: THE COMPLETE ACTION TO O(1/¢?)

In this appendix we give the complete action for electrons
interacting with electromagnetic fields in the weakly relativ-
istic limit, up to and including terms of O(1/c?). Let A L
=(¢,—A) be the four-vector potential, o=(0,0,,03) the
Pauli matrices, and ug=¢/2m.c the Bohr magneton. We use
standard relativistic notation, with covariant and contravari-
ant indices related by a Minkowski metric g,,=(+,-,—,-).
Expanding the Dirac equation in powers of 1/¢, one obtains,
to order 1/c2, the following Hamiltonian in first
quantization:33-3

ﬁ=ﬁp+ﬁs—0+ﬁD+ﬁ5In‘ (Ala)

Here I:Ip is the Pauli Hamiltonian,

2
I:IP: ZL[—iV— SA(x,t)] +e@(x,t) — ugo - [V X A(x,1)]

me
(A1b)
and
A ie
Hy,=———0-[Vo(x,1) X V], (Alc)
4mgc
Hp = ———V20(x.1) (A1d)
D_szc2 A
A e (Ale)
m=— e
2 8m>c?

e

describe the spin-orbit interaction, the Darwin term, and the
relativistic mass correction, respectively. Via standard
techniques,'®?" this theory can be reformulated in terms of
an action that depends on fermionic (i.e., Grassmann-valued)

field ¢ and its adjoint ¢ as well as the four-vector-potential

field A,,. For the partition function one obtains
Z=7,Zsp, (A2)

where

Zy= f D[, yID[A JeSAl 4] (A3)

with an action
SAlth A 1= Sy [, ]+ SAA ]+ Sl b ;A
(Ada)
Here

1

22
mgc

V()

(A4b)

_ — 1
S¢[¢,¢]=jdx¢,,(x)[—af+ VR

describes the electrons with chemical potential x and
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SalA,]l= 8%Tf dxAM(x)[éaf+ VZ]AM(X)

1 p-1
y—F

2
dx{lﬁT+V'A(x)] (Adc)
8T p c

describes the electromagnetic fields, with p € R a gauge fix-
ing parameter. We use a four-vector notation x=(7,x), [dx
= [d7[dx for space and imaginary time. S, describes the
coupling between the fermions and the electromagnetic field;
it contains four separate contributions,

Sc[¢7 w;Aﬂ]zsc,P+Sc,L+SD+Sso- (A4d)

Here

Sepl, WA, =— ief dxe(x)n(x) + MBJ dxB(x) - ny(x)

(Ade)

is the Coulomb and Zeeman paramagnetic coupling that is
included in the Pauli equation, with n(x)=,(x)i,(x) and

()=, ()G g 1y (5).
SeL(rA,) == i2pup f dxh()A(x) - Vi (x)

+ i,u,Bf dx[V - A(x)]n(x)

2

- 2’; sz dxA%(x)n(x)

(A4f)
is the Landau diamagnetic coupling;
- —1ie
Sp(hrA) =5 f d[Ve(0)In(x)  (Adg)
8mzc

is the Darwin term that, in the relativistic hydrogen atom,
leads to the so-called zitterbewegung, and

Sl triA) = f iy ()0, - [Volx) X V1, (x)

2
e

(A4dh)
is the spin-orbit coupling.
The second factor in Eq. (A2) is
Zpp= f D[ 7, nle~Serln7l, (ASa)

Here 7 is a one-component Grassmannian field known as a
Fadeev-Popov ghost field, with 7 its adjoint, which is gov-
erned by an action

Seel 7, 1) = f dx7(x)d,, " n(x). (A5b)

APPENDIX B: PHASE-SPACE DECOMPOSITION OF
INTERACTION TERMS

For completeness, in this appendix we briefly recapitulate
the arguments that lead to the generation of a spin-spin in-
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teraction, Eq. (3.4), from a density-density interaction, Eq.
(3.3). For further discussion, see Refs. 23, 24, and 36; the
latter also explain the relation to the work by Shankar.?

Consider an electron-electron interaction with an interac-
tion amplitude W. For simplicity we assume that the interac-
tion is purely static, and translationally invariant, but other-
wise general. The action has the form

-1
S= 7[ dx, -~-dx4f dTW(x| — x93 — X4; (x5 + x4 — X,

- xz)/z) 7(710203(7417/0'1(x1 s T) J/(r}(x% T) X lzb(r4(x4» T) l//az(xz, T)
(B1)

with 7 a general rank-4 tensor. We define Fourier transforms
oK) =NTIVE e, (k). i, (k) =TIV e, (k).
k k

(B2a)

Wip(@) = f dxdydzW(x,y;z) (B2b)
with kx=k-x—w,7 where k is a wave vector and w,
=27T(n+1/2) a fermionic Matsubara frequency. Hermiticity
requires

W;:,p(q) = Wk,p(_ Q) s (B3a)

T T, . (B3b)

0']0'20'30'4= 0'20'|0'40'3

We then have

—1/T\? _ —
= 7(;) k%q Wk,p(q) 70102030'4(//01(k - 61/2) l/’u3(p

+ q/2) ll/(r4(p - q/z) lr//(rz(k + 61/2) (B4a)

-1

T\? _
= 7 ( ‘_/) E W(k+p—q)/2,(k+p+q)/2(p -k) To, 0203o4¢al (k
kp.q

= 4/2) (P + 412) 5 (k + q12) s (p = 912) (B4b)

-1(T\? -
=7 ‘_/ k%q W(p—k+q)/2,(k_p+q)/2(p + k) 70'10'21730'41100'1(_ k

+q/12) e, (k+12) Xty (= p+q/2) s (p+q/2).  (Bde)

As long as all wave vectors are summed over, all three of
these expressions are identical. If one restricts the summation
in such a way that both |g| and the modulus of the third
argument of W are smaller than a cutoff wave number A,
then we can represent the action as a sum of all three terms.
They represent small-angle scattering, large-angle scattering,
and 2kg scattering, respectively. Alternatively, if one is inter-
ested in only one of these channels, one can pick the appro-
priate formulation of S, restrict oneself to small wave num-
bers, and neglect the other channels. For our purposes, we
are interested in the large-angle scattering channel, Eq.
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(B4b). By choosing 7'0.102030.420'?71020'?7304 and making use of
Eq. (C2a) we obtain a term that has the structure of the
exchange interaction, Eq. (3.4) (in addition to a contribution
to the number-density interaction). The resulting spin-triplet
mode is more complicated than a pure spin density but it has
an overlap with the spin density and can be restricted to the
latter by the projection technique explained in Ref. 36. Note
that a repulsive Coulomb interaction results in an attractive
exchange interaction due to a commutation of fermion fields
that is necessary to write the result in the form of Eq. (3.4).
Similarly, by choosing To,0,030,= o-?,l 0,050, and making use
of Eq. (C2b) we obtain the structure found in Sec. II B 3 (in
addition to terms that couple the number density and the spin
density).

APPENDIX C: PROPERTIES OF PAULI MATRICES

Here we give some properties of the Pauli matrices that
were used in Sec. IIL. Let o=(0%, 0”,0%) = (a', 02, ) be the
Pauli matrices with the commutator property

o'’ =iok (i,j,k=1,2,3), (C1)

and ¢° the 2 X2 unit matrix. Then the following identities
hold

1 1
0 0 __-0 0 -
01057 0304 0701047 030y + o) aoy” 0-0'30-2’ (Cza)
0 — l 0 1, !

o =—0 g o o + -0 X o .
0'10'2 0'30'4 2 0'10'4 0’30’2 2 0’10'4 0'30'2 2 0'10'4 0'30'2
(C2b)

Equation (C2a) is easily checked by a direct calculation and
Eq. (C2b) follows by multiplying Eq. (C2a) by o from the
right and using Eq. (C1).

APPENDIX D: NONLOCAL ELECTRON-ELECTRON
INTERACTION

In this appendix we demonstrate that a general interaction
amplitude of the type used in Eq. (B1) is generated in per-
turbation theory from an ordinary two-body interaction. For
simplicity, we consider spinless fermions interacting via an
interaction potential V; spin dependence or gradients, as in
the last term of Eq. (3.1), are easily added. We also consider
a translationally invariant model; we will comment on this
feature below.

The bare electron-electron interaction is described by a
term in the action

§= f dxdyV/(x = y) ) Ply) () ). (D1)
Our goal is to construct an effective interaction of the form

Seff:fdxl'“dx4 X Wlxy = xp,03 = X453 (X3 + x4 — X — x)/2]

X)) ihlox3) ghcg) hlx)

that has a structure necessary for contributing to the tensor

(D2)
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X X X, X

\Y W

y y X4 X3
FIG. 2. Bare interaction V and effective interaction W.

D;;, Egs. (3.12b) and (3.12c), see Fig. 2. The bare interaction
corresponds to

W (x,y,:2) = 8x) 8(y)V(z). (D3)

This does not contribute to D;; since it enforces x=y=0.
More generally, contributions to W with the property
W(x,y,;2)=W(y,x;z) do not contribute to D;;. At second
order in V, there are several diagrams, both tree-level and
one-loop diagrams, that have this property. Consider, how-
ever, the diagrams shown in Fig. 3. They correspond to

W<2)(x,y;z) =8x) V(- y)f dx'G(=x" +y/12)G(x" +y/2)

XV(=x"+2z/2) + 8(y)V(- x)f dx’

XG(=x"+x2)G(x" +x/12)V(=x" +2/2),
(D4)

where G(x—y)={(y(x)i(y)) is the electron propagator.
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FIG. 3. A second-order contribution to W.

In order for W to contribute to D;; we must have
W(x,y;—z)=—W(x,y;z), see Eq. (3.12¢c). From Eq. (D4) we
see that this is the case if and only if V(x) has an odd com-
ponent V7(-x)==V(x). As far as the contribution to D;; is
concerned we can thus replace V in Eq. (D4) by V™ and this
automatically ensures W(y,x;z)=—W(x,y;z). If V is the
propagator of a scalar field, such as the quantity D in Sec.
III, then these symmetry properties can obviously not be re-
alized. However, in a realistic solid-state model V represents
the screened Coulomb interaction, V(x,y)=vc(x—y)/e(x,y),
and the dielectric function € has a contribution from the lat-
tice in addition to an electronic contribution. The latter will
only have the symmetry of the space group of the lattice and
on a lattice without inversion symmetry one will have
€(y,x) # €(x,y). Translational symmetry will also be broken,
of course, but this is not necessary for making the DM inter-
action nonzero, as the above example shows. Note that one
can consider a coarse-grained continuum theory for the DM
interaction, see Eq. (2.8), but the relevant Landau coefficient
must depend on the underlying lattice and vanish if the true
continuum limit is taken.
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